| 纳米结构材料在锂离子电池中的应用进展 |
| 当前位置: 论文资料 >> 工学论文 >> 材料工程学 >> 纳米结构材料在锂离子电池中的应用进展 | ||
| 纳米结构材料在锂离子电池中的应用进展 | |||||||||||||||||||||||||||||||||||||||||||||||||
|
表2:负极材料特性表
表3:电解液材料
表4:国外主要锂电池生产商及其产品
参考文献 [1] 吴宇平等著,锂离子电池,化学工业出版社,2004 [2] Mao, O. & Dahn,J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423-427 (1999). [3] Graetz et al. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194-197 (2003). [4] Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154-156 (2003). [5] Novak, P. et al. in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9 (2004). [6] Armstrong, A. R. et al. Lithium intercalation intoTiO2-B nanowires. Adv. Mater. 17 , 862 - 865 (2005) [7] Green, M. et al. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75-79 (2003). [8] Yang Z H , Wu H Q . [J ] . Chemical Physisc Letters , 2001 , 343 : 235-240. [9] Frackowia K E , Gautie R S , Garche R H , et al . [J ] . Carbon , 1999 , 37 ,61-69. [10] Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 150, A133-139 (2003). [11] 郑雪萍,曲选辉,锂离子电池正极材料LiMn2O4研究现状,稀有金属快报,2005. [12] Dong, W, et al. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457-459 (2000) [13] Robertson, A. D. et al. Layered LixMnyCo1-yO2 intercalation electrodes: inß uence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380-2386 (2001). [14] Kang, S. H. et al. Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater. 13, 1758-1764 (2001). [15] Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature and high rates. Electrochem. Solid-State Lett. 4, A170-172 (2001). [16] Croce, F. et al. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998). [17] Hawett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efÞ ciency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97-101 (2004). [18] MacGlashan, G.et al. The structure of poly(ethylene oxide)6:LiAsF6. Nature 398, 792-794 (1999). [19] Gadjourova, Z. et al. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520-523 (2001). [20] Christie, A. M. et al. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50-53 (2005). [21] ANTONINO SALVATORE ARICÒ, et al. Nature Materials 4, 366–377 (2005) |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||