当前位置: 论文资料 >> 工学论文 >> 材料工程学 >> 纳米结构材料在锂离子电池中的应用进展
纳米结构材料在锂离子电池中的应用进展

    表2:负极材料特性表

种类 重量能量密度
﹝ mAh/g ﹞
理论值
﹝mAh/g﹞
石墨 天然和人工 320 ~ 340 372
类石墨 240 ~ 360
非石墨 焦碳 180 ~ 220 ***
碳黑 150 ~ 280 ***
锂金属   966 353

    表3:电解液材料

溶剂 碳酸丙烯酯 PC ﹝Propylene Carbonate﹞
碳酸乙烯酯 EC ﹝Ethylene Carbonate﹞
碳酸二甲酯 DEC ﹝Dimethyl Carbonate﹞
甲酯 Propiolic Acid
1,4 – 丁丙酯 GBL ﹝γ- Butyrolactone﹞
溶质 LiPF6 ﹝主要﹞
LiBF4
LiClO4
LiAsF6
LiCF3SO3


    国内外锂电池生产企业
 
    国内的中信国安盟固利、余姚金和、杉杉科技、国泰华荣等厂商在正极材料、负极材料、电解液市场竞争力逐渐增强,而在隔离膜市场还需奋起直追。在下游锂电池市场,深圳比亚迪、深圳比克、深圳邦凯科技、TCL金能等厂商已在全球锂电池市场占据相当大的市场份额。中国已形成锂电池相对完整的产业链,在锂电池材料的配套方面占有一定的优势。
 
    国外主要锂电池生产商及其产品见下表。

    表4:国外主要锂电池生产商及其产品

企业 产品
SANYO Lithium Ion Batteries
Battery Engineering Lithium Thionyl Chloride Cells
EEMB Lithium Thionyl Chloride Batteries Li-ion Button Batteries Lithium Manganese Dioxide Cells
Panosonic Lithium Ion Batteries
GS Lithium Ion Batteries
Sonnenschein Lithium Thionyl Chloride Batteries Lithium Manganese Dioxide Batteries
WG Lithium Thionyl Chloride Cells VHT200 Lithium Thionyl Chloride Cells QTC85 Lithium Bromine Complex Cells BCX72 Lithium Sulfuryl Chloride Cells CSC93 Lithium Sulfuryl Chloride Cells PMX150 Lithium Sulfuryl Chloride Cells PMX165
 
    参考文献

    [1] 吴宇平等著,锂离子电池,化学工业出版社,2004
 
    [2] Mao, O. & Dahn,J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423-427 (1999).
 
    [3] Graetz et al. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194-197 (2003).
 
    [4] Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154-156 (2003).
 
    [5] Novak, P. et al. in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9 (2004).
 
    [6] Armstrong, A. R. et al. Lithium intercalation intoTiO2-B nanowires. Adv. Mater. 17 ,  862 - 865 (2005)
 
    [7] Green, M. et al. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75-79 (2003).
 
    [8] Yang Z H , Wu H Q . [J ] . Chemical Physisc Letters , 2001 , 343 : 235-240.
 
    [9] Frackowia K E , Gautie R S , Garche R H , et al . [J ] . Carbon , 1999 , 37 ,61-69.
 
    [10] Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 150, A133-139 (2003).
 
    [11] 郑雪萍,曲选辉,锂离子电池正极材料LiMn2O4研究现状,稀有金属快报,2005.
 
    [12] Dong, W, et al. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457-459 (2000)
 
    [13] Robertson, A. D. et al. Layered LixMnyCo1-yO2 intercalation electrodes: inß uence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380-2386 (2001).
 
    [14] Kang, S. H. et al. Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater. 13, 1758-1764 (2001).
 
    [15] Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature and high rates. Electrochem. Solid-State Lett. 4, A170-172 (2001).
 
    [16] Croce, F. et al. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998).
 
    [17] Hawett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efÞ ciency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97-101 (2004).
 
    [18] MacGlashan, G.et al. The structure of poly(ethylene oxide)6:LiAsF6. Nature 398, 792-794 (1999).
 
    [19] Gadjourova, Z. et al. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520-523 (2001).
 
    [20] Christie, A. M. et al. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50-53 (2005).
 
    [21] ANTONINO SALVATORE ARICÒ, et al. Nature Materials 4, 366–377 (2005)

上一页  [1] [2]